Comment trouver une ligne normale à une courbe

Une ligne normal à une courbe en un point donné est la ligne perpendiculaire à la ligne qui est tangente en ce même point. Trouver les points de perpendicularité pour toutes les lignes normales à la parabole

image0.jpg

qui passent par le point (3, 15).

Graphiquement la parabole et tracer le point (3, 15). Maintenant, avant que vous faites le calcul, essayer de rapprocher les lieux de toutes les lignes normales. Combien pouvez-vous voir? Il est assez facile de voir que, à partir de (3, 15), une ligne normale descend légèrement vers la droite et l'autre descend un peu plus raide vers la gauche. Mais avez-vous trouvé le troisième qui est entre les deux? Ne vous inquiétez pas si vous ne voyez celui-ci parce que quand vous faites le calcul, vous obtenez tous les trois solutions.

image1.jpg

La figure montre la parabole et les trois lignes normales.

En regardant la figure, vous pouvez apprécier la façon dont ce problème est pratique. Ça va vraiment être utile si vous arrive de vous trouver debout à l'intérieur de la courbe d'un mur parabolique, et vous voulez connaître l'emplacement précis des trois points sur le mur où vous pourriez lancer un ballon et le faire rebondir tout droit à tu.

La solution est très similaire à la solution du problème de la tangente, sauf que dans ce problème, vous utilisez la règle pour les lignes perpendiculaires:

Les pentes des droites perpendiculaires sont inverses et opposées.

Chaque ligne normale dans la figure est perpendiculaire à la ligne de tangente au point où la normale rencontre la courbe. Ainsi, la pente de chaque ligne normale est l'inverse opposé de la pente de la tangente correspondante - qui, bien sûr, est donnée par la dérivée. Alors voilà.

  1. Prenez un point de vue général, (x, y), Sur la parabole

    image2.jpg

    et substitut

    image3.jpg

    pour y.

    image4.jpg
  2. Prendre la dérivée de la parabole.

    image5.jpg
  3. En utilisant la formule de la pente, réglez la pente de chaque ligne normale à partir de (3, 15)

    image6.jpg

    égale à l'inverse de la dérivée opposé à

    image7.jpg

    et à résoudre pour X.

    image8.jpg

    Maintenant, il n'y a pas de façon automatique pour obtenir des solutions exactes à ce cube (3ème degré) équation comme la façon dont la formule quadratique vous donne les solutions d'une équation de 2ème degré. Au lieu de cela, vous pouvez représenter graphiquement

    image9.jpg

    et le X-intercepte vous donner les solutions. (Avec cette méthode, cependant, il n'y a aucune garantie que vous obtiendrez exactement Solutions- souvent, des solutions approximatives sont les meilleurs que vous pouvez faire avec des équations cubiques.) Mais dans ce problème, vous chance là et obtenir les solutions exactes de -8, - 4, et 12.

  4. Branchez chacun des X-coordonnées (-8, -4 et 12) dans

    image10.jpg

    obtenir le y-coordonne.

    image11.jpg

Ainsi, les trois points de normalité sont (-8, 4), (-4, 1), et (12, 9).


» » » » Comment trouver une ligne normale à une courbe